Wide-Beam Transducers

P48W
- 100 W Adjustable Wide-Beam
 - Adjustable beam settings
 - Easily change the beam direction by turning the insert
 - Wide port-starboard position (38° x 12°)
 - Bow-stern position (12° x 38°)
- 100 Watts
- Depth and Temperature
- Transom-Mount or Trolling-Motor Mounting
- 200 kHz
- Q at 200 kHz—6
- 7.6 m (25') cable with OEM connector
- Beamwidth: 200 kHz—38° x 12°
- Maximum Depth Range: 200 kHz—91 m to 152 m (300’ to 500’)
- Boat Size: 5 m to 7 m (17’ to 22’)

SS264W
- 1 kW, High-Definition Digital Broadband
 - Designed for tuna and marlin fishing
 - Identical 25° beams at 50 kHz and 200 kHz
 - 4 times wider at 200 kHz than all other 1 kW transducers
 - 1,000 Watts
 - Depth and fast-response temp. sensor
 - Transom-Mount, Urethane Housing
 - 50/200 kHz
 - Q at 50 kHz—4
 - Q at 200 kHz—15
 - 12 m (39’) cable with OEM connector
 - Beamwidth: 50 kHz—25°
 - 200 kHz—25°
 - Maximum Depth Range: 50 kHz—400 m to 610 m (1,350’ to 2,000’)
 - 200 kHz—100 m to 180 m (330’ to 600’)
 - Boat Size: Outboards and I/O’s up to 12 m (40’)

SS270W
- 1 kW, High-Definition Digital Broadband
 - Designed for tuna and marlin fishing
 - Identical 25° beams at 50 kHz and 200 kHz
 - 4 times wider at 200 kHz than all other 1 kW transducers
 - 1,000 Watts
 - Depth and fast-response temp. sensor
 - Thru-Hull, Stainless Steel Housing
 - 50/200 kHz
 - Q at 50 kHz—4
 - Q at 200 kHz—15
 - 12 m (39’) cable with OEM connector
 - Beamwidth: 50 kHz—25°
 - 200 kHz—25°
 - Maximum Depth Range: 50 kHz—400 m to 610 m (1,350’ to 2,000’)
 - 200 kHz—100 m to 180 m (330’ to 600’)
 - Boat Size: 9 m (30’) and up

Wide-beam is ideal for marking more bait and gamefish
- Wreck and structure finding on the continental shelf
- Vertical deep jiggling
- Downrigger fishing in saltwater or deep-water lakes

TM270W
- 1 kW, High-Definition Digital Broadband
 - Two transducers: 50 kHz wide-beam
 - 200 kHz wide-beam
 - Transducers can be purchased as a pair for dual-frequency operation or individually as single-frequency units
 - 1,000 Watts
 - Depth and fast-response temp. sensor
 - Thru-Hull, Stainless Steel Housing
 - 50/200 kHz
 - Q at 50 kHz—4
 - Q at 200 kHz—15
 - 12 m (39’) cable with OEM connector
 - Beamwidth: 50 kHz—25°
 - 200 kHz—25°
 - Maximum Depth Range: 50 kHz—400 m to 610 m (1,350’ to 2,000’)
 - 200 kHz—100 m to 180 m (330’ to 600’)
 - Boat Size: 8 m to 12 m (25’ to 40’)

Narrow-Beam Transducer
- Wreck and structure finding on the continental shelf
- Vertical deep jiggling
- Downrigger fishing in saltwater or deep-water lakes

Wide-Beam Transducer
- Wide-beam is ideal for marking more bait and gamefish
- Excellent fish detection in shallow and mid-water depths to 122 m (400')
- Bait and game fish marking in shallow to mid-water
- Blue-water trolling using both 50 kHz and 200 kHz

www.airmar.com
As Airmar constantly improves its products, all specifications are subject to change without notice. All Airmar products are designed to provide high levels of accuracy and reliability, however they should only be used as aids to navigation and not as a replacement for traditional navigation aids and techniques. Xducer ID® is a registered trademark of Airmar Technology Corporation. Other company or product names mentioned in this document may be trademarks or registered trademarks of their respective companies, which are not affiliated with Airmar.

200 kHz

<table>
<thead>
<tr>
<th>Number of Elements and Configuration</th>
<th>Beamwidth (@-3 dB)</th>
<th>RMS Power (W)</th>
<th>TVR</th>
<th>RVR</th>
<th>FOM</th>
<th>Q</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>38° x 12°</td>
<td></td>
<td>100 W</td>
<td>153 dB</td>
<td>-192 dB</td>
<td>-39 dB</td>
<td>6</td>
<td>1,100 Ω</td>
</tr>
</tbody>
</table>

BEAM DIAMETER VS DEPTH

<table>
<thead>
<tr>
<th>Depth</th>
<th>200 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 m (30')</td>
<td>2 m x 6 m (6' x 21')</td>
</tr>
<tr>
<td>30 m (100')</td>
<td>6 m x 21 m (21' x 69')</td>
</tr>
<tr>
<td>122 m (400')</td>
<td>26 m x 84 m (84' x 276')</td>
</tr>
</tbody>
</table>

50 kHz-AWlq / 200 kHz-BM

<table>
<thead>
<tr>
<th>Number of Elements and Configuration</th>
<th>Beamwidth (@-3 dB)</th>
<th>RMS Power (W)</th>
<th>TVR</th>
<th>RVR</th>
<th>FOM</th>
<th>Q</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>25° x 25°</td>
<td></td>
<td>1 kW</td>
<td>161 dB</td>
<td>-175 dB</td>
<td>-19 dB</td>
<td>4</td>
<td>200 Ω</td>
</tr>
</tbody>
</table>

BEAM DIAMETER VS DEPTH

<table>
<thead>
<tr>
<th>Depth</th>
<th>50 kHz</th>
<th>200 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 m (30')</td>
<td>4 m (13')</td>
<td>4 m (13')</td>
</tr>
<tr>
<td>30 m (100')</td>
<td>14 m (45')</td>
<td>14 m (45')</td>
</tr>
<tr>
<td>122 m (400')</td>
<td>55 m (180')</td>
<td>55 m (180')</td>
</tr>
<tr>
<td>305 m (1,000')</td>
<td>137 m (450')</td>
<td>137 m (450')</td>
</tr>
</tbody>
</table>

50 kHz-AWlq / 200 kHz-BM

<table>
<thead>
<tr>
<th>Number of Elements and Configuration</th>
<th>Beamwidth (@-3 dB)</th>
<th>RMS Power (W)</th>
<th>TVR</th>
<th>RVR</th>
<th>FOM</th>
<th>Q</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>25° x 25°</td>
<td></td>
<td>1 kW</td>
<td>161 dB</td>
<td>-175 dB</td>
<td>-19 dB</td>
<td>4</td>
<td>200 Ω</td>
</tr>
</tbody>
</table>

BEAM DIAMETER VS DEPTH

<table>
<thead>
<tr>
<th>Depth</th>
<th>50 kHz</th>
<th>200 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 m (30')</td>
<td>4 m (13')</td>
<td>4 m (13')</td>
</tr>
<tr>
<td>30 m (100')</td>
<td>14 m (45')</td>
<td>14 m (45')</td>
</tr>
<tr>
<td>122 m (400')</td>
<td>55 m (180')</td>
<td>55 m (180')</td>
</tr>
<tr>
<td>305 m (1,000')</td>
<td>137 m (450')</td>
<td>137 m (450')</td>
</tr>
</tbody>
</table>

50 kHz-AWlq / 200 kHz-BM

<table>
<thead>
<tr>
<th>Number of Elements and Configuration</th>
<th>Beamwidth (@-3 dB)</th>
<th>RMS Power (W)</th>
<th>TVR</th>
<th>RVR</th>
<th>FOM</th>
<th>Q</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>25° x 25°</td>
<td></td>
<td>1 kW</td>
<td>161 dB</td>
<td>-175 dB</td>
<td>-19 dB</td>
<td>4</td>
<td>200 Ω</td>
</tr>
</tbody>
</table>

BEAM DIAMETER VS DEPTH

<table>
<thead>
<tr>
<th>Depth</th>
<th>50 kHz</th>
<th>200 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 m (30')</td>
<td>4 m (13')</td>
<td>4 m (13')</td>
</tr>
<tr>
<td>30 m (100')</td>
<td>14 m (45')</td>
<td>14 m (45')</td>
</tr>
<tr>
<td>122 m (400')</td>
<td>55 m (180')</td>
<td>55 m (180')</td>
</tr>
<tr>
<td>305 m (1,000')</td>
<td>137 m (450')</td>
<td>137 m (450')</td>
</tr>
</tbody>
</table>

©Airmar® Technology Corporation Wide_Beam_PC_J 12/15/10

As Airmar constantly improves its products, all specifications are subject to change without notice. All Airmar products are designed to provide high levels of accuracy and reliability, however they should only be used as aids to navigation and not as a replacement for traditional navigation aids and techniques. Xducer ID® is a registered trademark of Airmar Technology Corporation. Other company or product names mentioned in this document may be trademarks or registered trademarks of their respective companies, which are not affiliated with Airmar.