When Your Living Depends on Finding Fish...

Built on famous new broadband transducers...finding mission. Whether you’re a commercial fisherman, charter captain, or tournament angler, there’s a new game in town! Airmar CHIRP transducers enable better detection down to 3,000 m (10,000’) with 5 to 10 times greater detail and resolution to precisely its possible to distinguish between individual baitball, game fish, and underwater structures. One transducer delivers up to 1,150 kHz of total bandwidth in just one installation, saving customers time and money.

Airmar…it’s what’s under your boat.

The CHIRP Difference

Broadband marine fishfinders operate at discrete frequencies such as 50 kHz and 200 kHz, use relatively short-duration transmit pulses, and use remodeled sonar transducers. In contrast, CHIRP (compressed high-intensity radar pulse) uses a precise sweep pattern of many frequencies within a long-duration transmit pulse from a broadband transducer, so the equivalent sound energy transmitted into the water is 10 to 100 times greater than a conventional narrowband transducer. The echo energy returning to the transducer, superior to that generated by a conventional transducer, is then processed by the fishfinder’s DSP to yield a high-performance computer and displayed in ultra-sharp detail on the display. The combination of CHIRP, a broadband transducer, and the fishfinder’s DSP results in dramatically better fish and bottom detection, superior depth capability, and significantly better performance at speed.

Does Your Fishfinder CHIRP?

Only CHIRP®/Spread Spectrum sounds using Airmar broadband transducers can operate as a CHIRP fishfinder system. When Airmar new transducer is paired with a broadband fishfinder, the result is 5 to 10 times greater sensitivity and performance than current fishfinder technology. Packed with exclusive technology like Transducer ID™ and new CHIRP Tilted Element™, Airmar transducers are ultra-sensitive and designed to automatically sweep frequency bands from 2 kHz to 210 kHz with no tuning necessary. As a result, all targets detected in the entire bandwidth will be on the display—even only what is measured in traditional frequencies at 50 kHz and 200 kHz.

Airmar’s complete line of twenty-four (24) CHIRP transducers are available in seven (7) different mounting options — through-hull, tilted element, transom mount, deadrise compensation, and “in-hull” solutions. To view a complete list of CHIRP transducers, please visit www.airmar.com. Visit www.AIRMAR.com for a list of CHIRP-ready transducers.

Advantages of Thru-Hull Transducers

When your mission is catching fish, the Airmar CHIRP transducers are already designed for the ultimate fishing mission. CHIRP transducer are built for the underwater environment, including the most challenging conditions. CHIRP transducers are designed to be completely submerged in the water for maximum performance, increasing depth penetration and better fish and bottom detection.

Advantages of Tilted Element™ Transducers

Tilted Element transducers are low-profile housings that protrude less than 6.35 mm (0.25") outside of the hull. Rather than using a performance limiting block to control hull deadrise, the cone element is tilted inside the transducer at an angle of either a fixed 12° or 20° angle, accommodating hull deadrise angles up to 24°. When installed to the hull, the tilted element produces a more desirable compromise among the lower verticals which results in strong echo returns and accurate depth readings. Tilted element transducers are an ideal solution for fast, trailered, sportfishing vessels where a thru-hull transducer would not be practical. When Airmar’s new CHIRP technology is coupled with the high-performance Tilted Element transducer, the result is a fishfinder capable of delivering the ultimate fishing performance.

Unique Transducer ID™

Airmar Transducer ID feature measures and stores the operating parameters for each transducer. This enables the fishfinder to automatically configure itself to the transducer being used. The embedded microcontroller community monitors ceramic resonant elements, Airmar’s Transducer ID feature measures and stores the operating parameters for each transducer. This enables the fishfinder to automatically configure itself to the transducer being used.

Quality “Q” Value

A CHIRP transducer is more about bandwidth and the width of each frequency band. A CHIRP transducer can vary from 1.6 kHz to 1.2 kHz, depending on the model. For example, a CHIRP transducer has an average “Q” of 0 to 10. The lower the “Q” number, the less imaging in the transducer and the better the performance—an improved individual fish separation along with bottom imaging in rapidly changing water depths such as ledges and offshore canyons. All Airmar CHIRP transducers have a “Q” of 3 or less.

Technical Information

The CHIRP Broadband transducer has a flat response and can run across the entire frequency range.

The CHIRP Tilted Element transducer has a flat response and can run across the entire frequency range.

www.gemeco.com

Airmar’s complete line of twenty-four (24) CHIRP transducers are available in seven (7) different mounting options — through-hull, tilted element, transom mount, deadrise compensation, and “in-hull” solutions. To view a complete list of CHIRP transducers, please visit www.airmar.com. Visit www.AIRMAR.com for a list of CHIRP-ready transducers.

Advantages of Tilted Element™ Transducers

Tilted Element transducers are low-profile housings that protrude less than 6.35 mm (0.25") outside of the hull. Rather than using a performance limiting block to control hull deadrise, the cone element is tilted inside the transducer at an angle of either a fixed 12° or 20° angle, accommodating hull deadrise angles up to 24°. When installed to the hull, the tilted element produces a more desirable compromise among the lower verticals which results in strong echo returns and accurate depth readings. Tilted element transducers are an ideal solution for fast, trailered, sportfishing vessels where a thru-hull transducer would not be practical. When Airmar’s new CHIRP technology is coupled with the high-performance Tilted Element transducer, the result is a fishfinder capable of delivering the ultimate fishing performance.

Unique Transducer ID™

Airmar Transducer ID feature measures and stores the operating parameters for each transducer. This enables the fishfinder to automatically configure itself to the transducer being used. The embedded microcontroller community monitors ceramic resonant elements, Airmar’s Transducer ID feature measures and stores the operating parameters for each transducer. This enables the fishfinder to automatically configure itself to the transducer being used.

Quality “Q” Value

A CHIRP transducer is more about bandwidth and the width of each frequency band. A CHIRP transducer can vary from 1.6 kHz to 1.2 kHz, depending on the model. For example, a CHIRP transducer has an average “Q” of 0 to 10. The lower the “Q” number, the less imaging in the transducer and the better the performance—an improved individual fish separation along with bottom imaging in rapidly changing water depths such as ledges and offshore canyons. All Airmar CHIRP transducers have a “Q” of 3 or less.

Technical Information

The CHIRP Broadband transducer has a flat response and can run across the entire frequency range.

The CHIRP Tilted Element transducer has a flat response and can run across the entire frequency range.

Screen shot courtesy of Jason Pipe IGFA Ambassador Captain.

www.gemeco.com

Airmar’s complete line of twenty-four (24) CHIRP transducers are available in seven (7) different mounting options — through-hull, tilted element, transom mount, deadrise compensation, and “in-hull” solutions. To view a complete list of CHIRP transducers, please visit www.airmar.com. Visit www.AIRMAR.com for a list of CHIRP-ready transducers.

Advantages of Tilted Element™ Transducers

Tilted Element transducers are low-profile housings that protrude less than 6.35 mm (0.25") outside of the hull. Rather than using a performance limiting block to control hull deadrise, the cone element is tilted inside the transducer at an angle of either a fixed 12° or 20° angle, accommodating hull deadrise angles up to 24°. When installed to the hull, the tilted element produces a more desirable compromise among the lower verticals which results in strong echo returns and accurate depth readings. Tilted element transducers are an ideal solution for fast, trailered, sportfishing vessels where a thru-hull transducer would not be practical. When Airmar’s new CHIRP technology is coupled with the high-performance Tilted Element transducer, the result is a fishfinder capable of delivering the ultimate fishing performance.

Unique Transducer ID™

Airmar Transducer ID feature measures and stores the operating parameters for each transducer. This enables the fishfinder to automatically configure itself to the transducer being used. The embedded microcontroller community monitors ceramic resonant elements, Airmar’s Transducer ID feature measures and stores the operating parameters for each transducer. This enables the fishfinder to automatically configure itself to the transducer being used.

Quality “Q” Value

A CHIRP transducer is more about bandwidth and the width of each frequency band. A CHIRP transducer can vary from 1.6 kHz to 1.2 kHz, depending on the model. For example, a CHIRP transducer has an average “Q” of 0 to 10. The lower the “Q” number, the less imaging in the transducer and the better the performance—an improved individual fish separation along with bottom imaging in rapidly changing water depths such as ledges and offshore canyons. All Airmar CHIRP transducers have a “Q” of 3 or less.

Technical Information

The CHIRP Broadband transducer has a flat response and can run across the entire frequency range.

The CHIRP Tilted Element transducer has a flat response and can run across the entire frequency range.

Screen shot courtesy of Jason Pipe IGFA Ambassador Captain.
When Your Living Depends on Finding Fish... When Your Living Depends on Finding Fish... When Your Living Depends on Finding Fish...

When Airmar constantly improves its products, all specifications are subject to change without notice. May be trademarks or registered trademarks of their respective companies, which are not affiliated with Airmar.

The CHIRP Difference

Broadband marine fishfinders operate at discrete frequencies such as 50 kHz and 200 kHz, use relatively short-duration transmit pulses, and use membrane-type sonar transducers. In contrast, CHIRP (compressed high-intensity radar pulse) uses a precise sweep pattern of many frequencies within a long-duration transmit pulse from a broadband transducer, so the equivalent sound energy transmitted into the water is 1,000 times greater than a conventional marine fishfinder. The echo energy returning to the transducer, superior to that generated by a conventional transducer, is then processed by the fishfinder’s DSP and displayed on a computer and displayed in ultra-sharp detail on the display. The combination of CHIRP, a broadband transducer, and the fishfinder’s DSP results in dramatically better fish and bottom detection, superior depth capability, and significantly better performance at speed.

Does Your Fishfinder CHIRP?

Only CHIRP®/Spread Spectrum sounders using Airmar broadband transducers can operate as a CHIRP® fishfinder system. When Airmar® new transducer is paired with a broadband fishfinder, the result is 5 to 10 times greater sensitivity and performance than current fishfinder technology. Packed with exclusive technology like CHIRP®/Spread Spectrum, CHIRP® broadbands, and Airmar EMEA www.airmar.com/emea, Airmar®…it’s what’s under your boat.

Advantages of Tilted Element™ Transducers

Tilted Element transducers are low-profile housings that protrude less than 6.35 mm (0.25”) outside of the hull. Rather than using fixed deadrise angles designed to correct for hull deadrise, the ceramic element is tilted inside the transducer at either a fixed 12° or 20° angle, accommodating hull deadrise angles up to 24°. When installed to the hull, the tilted feature provides optimal broadside dispersion, among the lowest verticals which result in strong echo returns and accurate depth readings. Tilted element transducers are an ideal solution for fish, angled, and sports fishing vessels where a thru-hull transducer with a high-performance fairing cannot be installed.

Unique Transducer ID™

Airmar® Transducer ID feature measures and stores the operating parameters for each transducer. This enables the fishfinder to automatically configure itself to the transducer being used. The embedded microcontroller community monitors ceramic operating temperatures under the transducer, enabling strict control of output power. The transducer provides the transducer manufacturer with the frequency, operating temperature, and manufacturer ID. Sound data also exists with troubleshooting, warranty or any required information about the transducer.

Quality “Q” Value

C/o is a measure of bandwidth and the rise and fall times of target echoes. Airmar “Q” values range from 1 to 30, depending on the model. Competitive transducers have an average “Q” of 25 to 30. The lower the “Q” number, the less ringing in the transducer and the better the performance—improved individual fish separation along with bottom imaging in rapidly changing water depths such as boulders and offshore canyons. All Airmar® CHIRP transducers have a “Q” of 3 or less.

CHIRP® Broadband transducer is the most advanced fishfinder transducer technology. www.airmar.com

Screen shot courtesy of Garmin®.

Technical Information

Advantages of Thru-Hull Transducers

When thru-hull transducers are installed with a High-Performance Fairing, the transducer face is parallel to the waterline resulting in a beam that is vertically oriented for maximum echo returns and the best possible performance. The fairing compensates for hull deadrise and reduces the effects of turbulence over the transducer face. Thru-hull transducers will work with any engine type: inboard, outboard, or I/O.

When thru-hull transducers are installed with a High-Performance Fairing, the transducer face is parallel to the waterline resulting in a beam that is vertically oriented for maximum echo returns and the best possible performance. The fairing compensates for hull deadrise and reduces the effects of turbulence over the transducer face. Thru-hull transducers will work with any engine type: inboard, outboard, or I/O.

Unique Transducer ID™

Airmar® Transducer ID feature measures and stores the operating parameters for each transducer. This enables the fishfinder to automatically configure itself to the transducer being used. The embedded microcontroller community monitors ceramic operating temperatures under the transducer, enabling strict control of output power. The transducer provides the transducer manufacturer with the frequency, operating temperature, and manufacturer ID. Sound data also exists with troubleshooting, warranty or any required information about the transducer.

Quality “Q” Value

C/o is a measure of bandwidth and the rise and fall times of target echoes. Airmar “Q” values range from 1 to 30, depending on the model. Competitive transducers have an average “Q” of 25 to 30. The lower the “Q” number, the less ringing in the transducer and the better the performance—improved individual fish separation along with bottom imaging in rapidly changing water depths such as boulders and offshore canyons. All Airmar® CHIRP transducers have a “Q” of 3 or less.

CHIRP® Broadband transducer is the most advanced fishfinder transducer technology. www.airmar.com

Screen shot courtesy of Garmin®.

Technical Information

Advantages of Thru-Hull Transducers

When thru-hull transducers are installed with a High-Performance Fairing, the transducer face is parallel to the waterline resulting in a beam that is vertically oriented for maximum echo returns and the best possible performance. The fairing compensates for hull deadrise and reduces the effects of turbulence over the transducer face. Thru-hull transducers will work with any engine type: inboard, outboard, or I/O.
Tilted Element™ (Low-Frequency)

- Low—CHIRPS from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0° or 12° tilted versions only
- 35 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 kHz plus everything else in the bandwidth

DIMENSIONS
- Ø 51 mm (2.00”)
- 172 mm (6.75”)
- 77 mm (3.05”)
- 349 mm (13.73”)

B75LH / LM Transducer

- Depth & fast-response water-temperature sensor
- Same elements and performance as the B75/LH/LM offered in a low-profile housing
- Bronze transducer housing with High-Performance Fairing
- Covers popular fishing frequencies of 50 kHz plus everything else in the bandwidth
- Medium—CHIRPS from 80 kHz to 130 kHz, 24° to 16° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 80 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 88 and 107 kHz plus everything else in the bandwidth
- Medium-frequency benefits include the ability to sound deeper than the high-frequency, along with better target resolution than the low-frequency

DIMENSIONS
- Ø 135.8 mm (5.35”)
- 134 mm (5.26”)
- 64 mm (2.50”)
- 98 mm (3.88”)

B75H

- High—CHIRPS from 130 kHz to 210 kHz, 15° to 9° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 115 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 200 kHz plus everything else in the bandwidth
- High-frequency benefits include the ability to sound deeper than the medium-frequency, along with better target resolution than the low-frequency

DIMENSIONS
- Ø 94 mm (3.71”)
- 141 mm (5.53”)
- 76 mm (2.95”)
- 141 mm (5.53”)

B75M

- Medium—CHIRPS from 80 kHz to 130 kHz, 24° to 16° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 80 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 88 and 107 kHz plus everything else in the bandwidth
- Medium-frequency benefits include the ability to sound deeper than the high-frequency, along with better target resolution than the low-frequency

DIMENSIONS
- Ø 97.1 mm (3.82”)
- 136.6 mm (5.38”)
- 60 mm (2.36”)
- 136.6 mm (5.38”)

B75L

- Low—CHIRPS from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0° or 12° tilted versions only
- 35 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 kHz plus everything else in the bandwidth

DIMENSIONS
- Ø 51 mm (2.00”)
- 172 mm (6.75”)
- 77 mm (3.05”)
- 349 mm (13.73”)

B75LN (Low & High Frequency)

- Depth & fast-response water-temperature sensor
- Same elements and performance as the B75/LHM offered in a low-profile housing
- Bronze transducer housing
- Covers popular fishing frequencies of 50 and 200 kHz plus everything else in the bandwidth
- Low—CHIRPS from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0° or 12° tilted versions only
- 35 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 kHz plus everything else in the bandwidth
- Medium—CHIRPS from 80 kHz to 130 kHz, 24° to 16° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 80 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 88 and 107 kHz plus everything else in the bandwidth
- Medium-frequency benefits include the ability to sound deeper than the high-frequency, along with better target resolution than the low-frequency
- High—CHIRPS from 130 kHz to 210 kHz, 15° to 9° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 115 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 200 kHz plus everything else in the bandwidth
- High-frequency benefits include the ability to sound deeper than the medium-frequency, along with better target resolution than the low-frequency

DIMENSIONS
- Ø 136.6 mm (5.38”)
- 134 mm (5.26”)
- 64 mm (2.50”)
- 141 mm (5.53”)

B765LN (Low & Medium Frequency)

- Depth & fast-response water-temperature sensor
- Same elements and performance as the B765/LHM/LM offered in a low-profile housing
- Bronze transducer housing
- Covers popular fishing frequencies of 55, 88, and 107 kHz plus everything else in the bandwidth
- Low—CHIRPS from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 50 kHz of total bandwidth from one transducer
- Covers popular fishing frequency of 50 kHz plus everything else in the bandwidth
- Medium—CHIRPS from 80 kHz to 130 kHz, 24° to 16° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 50 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 88 and 107 kHz plus everything else in the bandwidth
- Medium-frequency benefits include the ability to sound deeper than the high-frequency, along with better target resolution than the low-frequency
- High—CHIRPS from 130 kHz to 210 kHz, 15° to 9° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 80 kHz of total bandwidth from one transducer
- Covers popular fishing frequency of 200 kHz plus everything else in the bandwidth
- High-frequency benefits include the ability to sound deeper than the medium-frequency, along with better target resolution than the low-frequency

DIMENSIONS
- Ø 135.8 mm (5.35”)
- 134 mm (5.26”)
- 64 mm (2.50”)
- 141 mm (5.53”)

B765LH / LM Transducer

- Depth & fast-response water-temperature sensor
- Same elements and performance as the B75/LH/LM offered in a low-profile housing
- Bronze transducer housing with High-Performance Fairing
- Covers popular fishing frequencies of 50 kHz plus everything else in the bandwidth
- Low—CHIRPS from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0° or 12° tilted versions only
- 35 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 kHz plus everything else in the bandwidth
- Medium—CHIRPS from 80 kHz to 130 kHz, 24° to 16° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 80 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 88 and 107 kHz plus everything else in the bandwidth
- Medium-frequency benefits include the ability to sound deeper than the high-frequency, along with better target resolution than the low-frequency
- High—CHIRPS from 130 kHz to 210 kHz, 15° to 9° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 115 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 200 kHz plus everything else in the bandwidth
- High-frequency benefits include the ability to sound deeper than the medium-frequency, along with better target resolution than the low-frequency

DIMENSIONS
- Ø 51 mm (2.00”)
- 172 mm (6.75”)
- 77 mm (3.05”)
- 349 mm (13.73”)

B765M

- Medium—CHIRPS from 80 kHz to 130 kHz, 24° to 16° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- Covers popular fishing frequencies of 88 and 107 kHz plus everything else in the bandwidth
- Medium-frequency benefits include the ability to sound deeper than the high-frequency, along with better target resolution than the low-frequency

DIMENSIONS
- Ø 94 mm (3.71”)
- 141 mm (5.53”)
- 76 mm (2.95”)
- 141 mm (5.53”)

B765H

- High—CHIRPS from 130 kHz to 210 kHz, 15° to 9° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- Covers popular fishing frequency of 200 kHz plus everything else in the bandwidth
- High-frequency benefits include the ability to sound deeper than the medium-frequency, along with better target resolution than the low-frequency

DIMENSIONS
- Ø 97.1 mm (3.82”)
- 136.6 mm (5.38”)
- 60 mm (2.36”)
- 136.6 mm (5.38”)

B765L
Tilted Element™ (Low Frequency)

- Low—CHIRPS from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0° or 12° tilted versions only
- 35 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 kHz plus everything else in the bandwidth

Tilted Element™ (Medium Frequency)

- Medium—CHIRPS from 80 kHz to 130 kHz, 24° to 16° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 80 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 88 and 107 kHz plus everything else in the bandwidth

Tilted Element™ (High Frequency)

- High—CHIRPS from 130 kHz to 210 kHz, 15° to 9° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 115 kHz of total bandwidth from one transducer
- Covers popular fishing frequency of 200 kHz plus everything else in the bandwidth

DIMENSIONS

- Depth & fast-response water-temperature sensor
- Same elements and performance as the B75/LH/MOM offered in a low-profile housing
- Bronze transducer housing
- Boat Size: Up to 8 m (25)
- Hull Type: Fiberglass or wood

Thru-Hull

- B765LM (Low & High Frequency)
- B75L (Low & Medium-Frequency)
- B75M (Medium-Frequency)
- B75H (High-Frequency)

DIMENSIONS

- Depth & fast-response water-temperature sensor
- Low—CHIRPS from 40 kHz to 75 kHz, 32° to 21° beamwidth
- High—CHIRPS from 130 kHz to 210 kHz, 15° to 9° beamwidth
- 115 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 and 200 kHz plus everything else in the bandwidth

DIMENSIONS

- Available in 0°, 12°, or 20° tilted versions
- Covers popular fishing frequency of 200 kHz plus everything else in the bandwidth
DIMENSIONS

B765LM (Low & Medium-Frequency)

- Depth & fast-response water-temperature sensor
- Low—CHIRPs from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Medium—CHIRPs from 80 kHz to 130 kHz, 24° to 16° beamwidth
- High—CHIRPs from 130 kHz to 210 kHz, 15° to 9° beamwidth
- Covers popular fishing frequencies of 50 kHz to 200 kHz plus everything else in the bandwidth
- Bronze transducer housing with High-Performance Fairing
- Nut: 9/16"-12 UNC threads
- Hole size: 6.25" (158 mm)
- Free area: 42.3 mm (1.66"

B765LH / LM Transducer

- Low—CHIRPs from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0° or 12° tilted versions only
- 35 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 kHz to 200 kHz plus everything else in the bandwidth
- Bronze transducer housing with High-Performance Fairing
- Nut: 9/16"-12 UNC threads
- Hole size: 6.25" (158 mm)
- Free area: 42.3 mm (1.66"

Hull Type: Fiberglass or wood

B75H (High-Frequency)

- Low—CHIRPs from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Medium—CHIRPs from 80 kHz to 130 kHz, 24° to 16° beamwidth
- High—CHIRPs from 130 kHz to 210 kHz, 15° to 9° beamwidth
- Covers popular fishing frequencies of 200 kHz plus everything else in the bandwidth
- Bronze transducer housing with High-Performance Fairing
- Nut: 5/8"-18 UNC threads
- Hole size: 7.5" (191 mm)
- Free area: 80.6 mm (3.15"

Hull Type: Fiberglass or wood

B75L

- Low—CHIRPs from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 20 kHz of total bandwidth from one transducer
- Covers popular fishing frequency of 50 kHz plus everything else in the bandwidth
- Bronze transducer housing
- Same elements and performance as the B75H/LH/LM offered in a low-profile housing
- Nut: 5/8"-18 UNC threads
- Hole size: 7.5" (191 mm)
- Free area: 80.6 mm (3.15"

Hull Type: Fiberglass or wood

B75M

- Low—CHIRPs from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 35 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 kHz to 200 kHz plus everything else in the bandwidth
- Bronze transducer housing
- Same elements and performance as the B75H/LH/LM offered in a low-profile housing
- Nut: 5/8"-18 UNC threads
- Hole size: 7.5" (191 mm)
- Free area: 80.6 mm (3.15"

Hull Type: Fiberglass or wood

B75LH / LM Transducer

- Low—CHIRPs from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0° or 12° tilted versions only
- 35 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 kHz to 200 kHz plus everything else in the bandwidth
- Bronze transducer housing
- Same elements and performance as the B75H/LH/LM offered in a low-profile housing
- Nut: 5/8"-18 UNC threads
- Hole size: 7.5" (191 mm)
- Free area: 80.6 mm (3.15"

Hull Type: Fiberglass or wood

Medium-frequency benefits include the ability to sound deeper than the high-frequency, along with better target resolution than the low-frequency

Tilted Element™

B75L (Low-Frequency)

- Low—CHIRPs from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0° or 12° tilted versions only
- 35 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 kHz plus everything else in the bandwidth
- Depth & fast-response water-temperature sensor
- Bronze transducer housing
- Nut: 9/16"-12 UNC threads
- Hole size: 6.25" (158 mm)
- Free area: 42.3 mm (1.66"

B75M (Medium-Frequency)

- Medium—CHIRPs from 80 kHz to 130 kHz, 24° to 16° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 50 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 88 and 107 kHz plus everything else in the bandwidth
- Depth & fast-response water-temperature sensor
- Bronze transducer housing
- Same elements and performance as the B75H/LH/LM offered in a low-profile housing
- Nut: 5/8"-18 UNC threads
- Hole size: 7.5" (191 mm)
- Free area: 80.6 mm (3.15"

B75H (High-Frequency)

- High—CHIRPs from 130 kHz to 210 kHz, 15° to 9° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 80 kHz of total bandwidth from one transducer
- Covers popular fishing frequency of 200 kHz plus everything else in the bandwidth
- Depth & fast-response water-temperature sensor
- Bronze transducer housing
- Same elements and performance as the B75H/LH/LM offered in a low-profile housing
- Nut: 5/8"-18 UNC threads
- Hole size: 7.5" (191 mm)
- Free area: 80.6 mm (3.15"

Hull Type: Fiberglass or wood

Tilted Element™

B75L (Low-Frequency)

- Low—CHIRPs from 40 kHz to 75 kHz, 32° to 21° beamwidth
- Available in 0° or 12° tilted versions only
- 35 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 50 kHz plus everything else in the bandwidth
- Depth & fast-response water-temperature sensor
- Bronze transducer housing
- Nut: 9/16"-12 UNC threads
- Hole size: 6.25" (158 mm)
- Free area: 42.3 mm (1.66"

B75M (Medium-Frequency)

- Medium—CHIRPs from 80 kHz to 130 kHz, 24° to 16° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 50 kHz of total bandwidth from one transducer
- Covers popular fishing frequencies of 88 and 107 kHz plus everything else in the bandwidth
- Depth & fast-response water-temperature sensor
- Bronze transducer housing
- Same elements and performance as the B75H/LH/LM offered in a low-profile housing
- Nut: 5/8"-18 UNC threads
- Hole size: 7.5" (191 mm)
- Free area: 80.6 mm (3.15"

B75H (High-Frequency)

- High—CHIRPs from 130 kHz to 210 kHz, 15° to 9° beamwidth
- Available in 0°, 12°, or 20° tilted versions
- 80 kHz of total bandwidth from one transducer
- Covers popular fishing frequency of 200 kHz plus everything else in the bandwidth
- Depth & fast-response water-temperature sensor
- Bronze transducer housing
- Same elements and performance as the B75H/LH/LM offered in a low-profile housing
- Nut: 5/8"-18 UNC threads
- Hole size: 7.5" (191 mm)
- Free area: 80.6 mm (3.15"

Hull Type: Fiberglass or wood

Medium-frequency benefits include the ability to sound deeper than the high-frequency, along with better target resolution than the low-frequency

Miscellaneous

- Depth & fast-response water-temperature sensor
- Same elements and performance as the B75H/LH/LM offered in a low-profile housing
- Bronze transducer housing
- Nut: 5/8"-18 UNC threads
- Hole size: 7.5" (191 mm)
- Free area: 80.6 mm (3.15"

Hull Type: Fiberglass or wood

MSRP

- B765LM Low & Medium-Frequency: $1,080.00
- B765LH / LM Transducer: $855.00
- B75H: $740.00
- B75M: $750.00
- B75M (Medium-Frequency): $855.00
- B75H (High-Frequency): $750.00
- B75L: $1,350.00
- B75LH / LM Transducer: $1,120.00
- B75H: $1,490.00
- B75M: $1,220.00
- B75H (High-Frequency): $1,235.00
- B75L: $1,120.00
- B75LH / LM Transducer: $960.00
Advantages of Thru-Hull Transducers

When thru-hull transducers are installed with a High-Performance Fairing, the transducer face is parallel to the waterline resulting in a beam that is vertically oriented for maximum echo returns and the best possible performance. The fairing compensates for hull deadrise and reduces turbulence over the transducer face, which allows tracking at speeds over 30 knots (35 MPH). This installation, when mounted in clear water (free of propellers and running gear), produces the most effective signal return even on the finest weather, resulting in crystal-clear bottom imaging capabilities. This transducer will work well with any engine type: inboard, outboard, or I/O.

Advantages of Tilted Element Transducers

Tilted Element transducers are low-profile housings that protrude less than 6.35 mm (0.25") outside of the hull. Rather than using conventional high-frequency transducers, the ceramic element is tilted inside the transducer at either a fixed 12° or 20° angle, accommodating hull deadrise angles up to 24°. When tilted to the hull, the tilted feature provides superior performance over conventional transducers, allowing the beam vertically which results in strong echo returns and accurate depth readings. Tilted element transducers are an ideal solution for flat, transom-hung vessels where a thru-hull transducer with a high-performance fairing cannot be installed.

Unique Transducer ID®

Airmar’s Transducer ID® feature measures and stores the operating parameters for each transducer. This enables the fishfinder to automatically configure itself to the transducer being used. The embedded microcontroller constantly monitors ceramic performance, temperature inside the transducer, enabling closed-loop control of power output. The transducer transmits a unique “fingerprint” of frequency. Sound data also assists with troubleshooting, warranty or any required information about the transducer.

Quality “Q” Value

A Q value is a measure of bandwidth and the rise and fall times of target echoes. Airmar Q-values range from 1.6 to 5.0, depending on the model. Lower Q-values mean a more narrow bandwidth and lower performance, whereas higher Q-values mean a more broad bandwidth and better performance. Each transducer is individually measured to ensure high Q-values for increased performance.

Technical Information

Screen shot courtesy of Jason Pipe IGFA Ambassador Captain.

Airmar…It’s what’s under your boat.

BROADER.
CLEARER.
GAME CHANGING TECHNOLOGY.